重温一下tf的线性回归
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
plotdata = {"batchsize":[], "loss":[]}
def moving_average(a, w= 10):
if len(a)<w :
return a[:]
return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]
train_X = np.linspace(-1,1,100)
train_Y = 2 * train_X + np.random.randn(100)*0.3
plt.plot(train_X, train_Y, 'ro', label= 'Original data')
plt.legend()
plt.show()
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
W = tf.Variable(tf.random_normal([1]),name="weight")
b = tf.Variable(tf.zeros([1]),name="bias")
z = tf.multiply(X,W)+b
cost = tf.reduce_mean(tf.square(Y-z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #梯度下降
init = tf.global_variables_initializer()
training_epochs = 20
display_step = 2
with tf.Session() as sess :
sess.run(init)
plotdata = {"batchsize":[],"loss":[]}
for epoch in range(training_epochs):
for(x,y) in zip (train_X, train_Y):
sess.run(optimizer,feed_dict={X:x,Y:y})
if epoch % display_step == 0:
loss = sess.run(cost, feed_dict = {X:train_X, Y:train_Y})
print("Epoch :" , epoch+1, "cost=", loss, "W=",sess.run(W),"b=",sess.run(b))
if not (loss == "NA"):
plotdata["batchsize"].append(epoch)
plotdata["loss"].append(loss)
print("Finished!")
print("cost=",sess.run(cost, feed_dict={X:train_X,Y:train_Y}),"W=",sess.run(W),"b=",sess.run(b))
plt.plot(train_X, train_Y, 'ro', label = "Original data")
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label ="Fittedline")
plt.legend()
plt.show()
plotdata["avgloss"] = moving_average(plotdata["loss"])
plt.figure(1)
plt.subplot(211)
plt.plot(plotdata["batchsize"],plotdata["batchsize"],'b--')
plt.xlabel('Minibatch number')
plt.ylabel('Loss')
plt.title('Minibatch run vs . Trainning loss')
plt.show()


发表评论